Artificial locomotion control: from human to robots
نویسندگان
چکیده
This paper concerns the simultaneous synthesis and control of walking gaits for biped robots. The goal is to propose an adaptable and reactive control law for two-legged machines. The problem is addressed with human locomotion as a reference. The starting point of our work is an analysis of human walking from descriptive (biomechanics) as well as explicative (neuroscience and physiology) points of view, the objective being to stress the relevant elements for the approach of robot control. The adopted principles are then: no joint trajectory tracking; explicit distinction and integration of postural and walking control; use of evolutive optimization objectives; on-line event handling and environment adaptation and anticipation. This leads to the synthesis of an original control scheme based on non-linear model predictive control: Trajectory Free NMPC. The movement is specified implicitly through coherent physical inequality constraints. Dynamic model and internal limitations of the system are part of the problem constraints. This work is validated by simulation results obtained for the Bip and Rabbit biped robots in various walking and standing situations and compared to human data recorded in these same situations. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation
The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomot...
متن کاملDynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...
متن کاملControl of Wheeled Mobile Manipulators with Flexible Suspension Considering Wheels Slip Effects
Wheeled mobile manipulators utilize both the locomotion capabilities of the wheeled platform and manipulation capacity of the arm. While the modelling and control of such systems have previously been studied, most of them have considered robots with rigid suspension and their wheels are subject to pure rolling conditions. To relax the aforementioned limiting assumptions, this research addresses...
متن کاملAnalysis of Multi-Robots Transportation with Multi-objective PSO Algorithm in an Artificial Capital Market
In this paper, to analyze the transport of autonomous robots, an artificial Capital market is used. Capital market is considered as a pier which loading and unloading of cargo is done. Autonomous robots load and unload from the ship to the warehouse wharf or vice versa. All the robots have the ability of transporting the loads, but depending on loads and the location of unloading (or loading) a...
متن کاملDecentralized control in natural and artificial legged systems
For legged locomotion, animals and humans rely more on decentralized feedback control than on the central control approach common in humanoid robotics. We present evidence that the decentralization does not hamper fidelity and may present an alternative approach to robust locomotion of legged robots from prosthesis to humanoids. Keywords-locomotion, decentralized control, bioinspiration
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 47 شماره
صفحات -
تاریخ انتشار 2004